

Thelper 2 (Th2) and B cells in atopic dermatitis

- learning from inborn errors of immunity

Rajka symposium (ISAD) 2025

Prof Cindy Ma

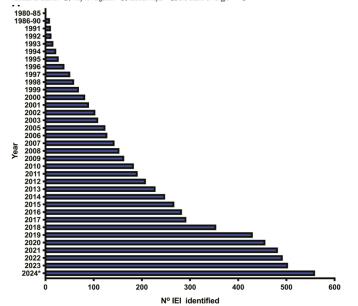
Experiments of Nature: Inborn errors of Immunity

- Are human knock-outs
- Caused by monogenic mutations in key genes
 - o result in loss or gain of function
- Compromised immune system
 - severe/recurrent infections
 - allergy/atopic disease
 - autoimmunity
 - Inflammation
 - cancer

Why study Inborn Errors of Immunity?

- Often not clear how gene defect results in clinical disease
- Aim: reveal how gene defects result in clinical disease.
 - Provide an explanation for disease pathogenesis
 - Facilitate diagnosis/therapy
 - Determine function of specific genes
 - Lead to development of novel therapies
- Studying rare disorders can provide insights into more common diseases that affect the general population
 - ie allergies, fungal infections (thrush), and viral infections.

Primary Atopic Disorders (PADs)



ARTICLE

Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee

M. Ceclía Poli¹² (a), vona Aksentijevich (b), Ahmed Aziz Bousfiha^{4,6} (b), Charlotte Cunningham-Rundles (c), Sophie Hambleton (c), Christoph Klein² (b), Tomohiro Morio (c), Appoine Picardi^{0,11} (b), Anne Puell^{12,13,14} (b), Nima Rezzeli (c), Mikko RJ, Seppäneni (c), Raz Somechi (c), Helen C. Suil³ (b), Kathleen E. Suillvani (c), Torrestoni (c), Isabella Mevis^{21,10} (b), and Stuart G. Tanaye^{22,13} (c)

- 508 genes causing 559 inborn errors of immunity
- Primary Atopic Disorders refer to ~50 genes associated with atopic manifestations –
 - Early onset, treatment resistant eczema, eosinophilia, food anaphylaxis
- Recent reviews
 - Ma and Hsu Immunol Rev 2025
 - Vaseghi-Shanjani et al. *Curr Opin Immunol* 2025
 - James et al. J Allergy Clin Immunol 2024

Primary Atopic Disorders

- Skin barrier
 - Structural proteins filaggrin (FLG)
 - Intracellular adhesion molecules corneodesmosin (CDSN), desmoplakin (DSP), desmoglein 1 (DSG1)
 - Protease inhibitors SPINK5
- Granulocyte dysregulation (increased mast cell degranulation)
 - phospholipase C gamma 2 (*PLCG2*), adhesion G protein-coupled receptor E2 (*ADGRE2*), *TPSAB1*
- Actinopathies
 - DOCK8, WASP, WIP, ARPC1B, NCKAP1L, STK4

Primary Atopic Disorders

- T-cell receptor signaling
 - CARD11 (CARMA1), BCL10, MALT1 CBM-opathies
 - Hypomorphic ZAP70, LAT
- Altered T cell receptor development
 - RAG1/2, IL7RA, Artemis, DNA ligase IV, adenosine deaminase
- Tregopathies
 - FOXP3, CD25 (IL-2RA)/STAT5B, CTLA4/LRBA, BACH2
- Metabolic defect
 - **PGM3**

Primary Atopic Disorders

- Cytokine signaling
 - IL12R/IFNGR/TBX21
 - TGFBR, ERBIN
 - JAKs/STATs (Gain-of-function *JAK1, STAT6;* Loss-of-function *STAT3*)

Overlap...

Hyper IgE syndrome (HIES)

- Rare primary immunodeficiency: ~ 1 in 100,000
- Characterised by clinical triad:
 - Recurrent Staphylococcal and Candida skin abscesses (opportunistic infections)
 - Recurrent cyst-forming pneumonia (S. aureus, S. pneumoniae, H. influenzae)
 - Elevated serum IgE (> 10x): other Igs are normal but often lack Agspecific Abs
 - Atopic disease eczema and/or food allergies
- Autosomal dominant (AD) and autosomal recessive (AR) forms

Autosomal dominant hyper IgE syndrome (AD-HIES)

- AD-HIES is associated with skeletal symptoms
 - typical HIES face, high palate, retained primary teeth, hyperextensibility of joints, scoliosis, osteoporosis, recurrent fractures
 - Defects not restricted to the immune system: connective tissue phenotypes

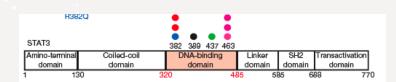
Grimbacher et al. 1999. NEJM

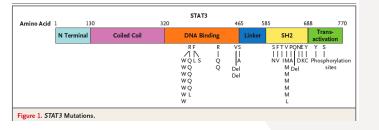
nature

Vol 448 30 August 2007 doi:10.1038/nature06096

LETTERS

Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-lgE syndrome


Yoshiyuki Minegishi¹, Masako Saito¹, Shigeru Tsuchiya², Ikuya Tsuge³, Hidetoshi Takada⁴, Toshiro Hara⁴, Nobuaki Kawamura⁵, Tadashi Ariga⁵, Srdjan Pasic⁶, Oliver Stojkovic⁷, Ayse Metin⁸ & Hajime Karasuyama¹


The NEW ENGLAND JOURNAL of MEDICINE

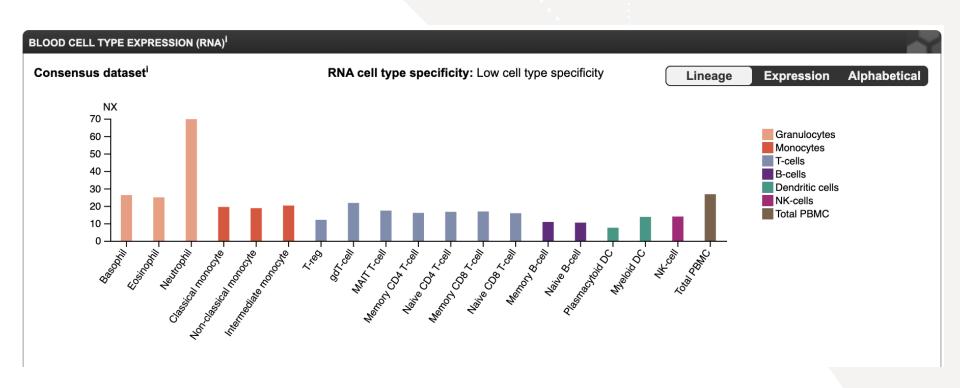
ORIGINAL ARTICLE

STAT3 Mutations in the Hyper-IgE Syndrome

Steven M. Holland, M.D., Frank R. DeLeo, Ph.D., Houda Z. Elloumi, Ph.D., Amy P. Hsu, B.A., Gulbu Uzel, M.D., Nina Brodsky, B.S., Alexandra F. Freeman, M.D., Andrew Demidowich, B.A., Joie Davis, A.P.R.N., Maria L. Turner, M.D., Victoria L. Anderson, C.R.N.P., Dirk N. Darnell, M.A., Pamela A. Welch, B.S.N., Douglas B. Kuhns, Ph.D., David M. Frucht, M.D., Harry L. Malech, M.D., John I. Gallin, M.D., Scott D. Kobayashi, Ph.D., Adeline R. Whitney, B.A., Jovanka M. Voyich, Ph.D., James M. Musser, M.D., Ph.D., Cristina Woellner, M.Sc., Alejandro A. Schäffer, Ph.D., Jennifer M. Puck, M.D., and Bodo Grimbacher, M.D.

STAT3 Signalling γc gp130 IL-2 IL-23 Type I/II interferon IL-21 IL-27 IL-10 IL12Rβ1 IL-10 IL-6 Receptors STAT3 STAT3 STAT3 Development Differentiation STAT3 Survival STAT3 Nucleus Cytoplasm

Mackie et al. 2023. Clin Exp Immunol


STAT3 activating cytokines

- IL-2/γc family of cytokines
 - IL-2, IL-4, IL-7, IL-9, IL-15, *IL-21*
- IL-6/gp130 family
 - IL-6, IL-11, IL-27, IL-31, LIF, oncostatin M, CNTF
- IL-10 family
 - IL-10, IL-19, IL-20, IL-22, IL-24, IL-26
- IFN family
 - IFN- γ , IFN- α/β , IL-28, IL-29
- CSF's
 - G-CSF, M-CSF, Flt3L
- other
 - IL-12, IL-23, EGF, leptin, growth hormone

STAT3 expression

How do defects in STAT3 explain the phenotype of AD-HIES patients?

- 1. Opportunistic infections
- 2. Humoral (antibody) defects
- 3. Atopic disease

How do defects in STAT3 explain the phenotype of AD-HIES patients?

- 1. Opportunistic infections
- 2. Humoral (antibody) defects
- 3. Atopic disease

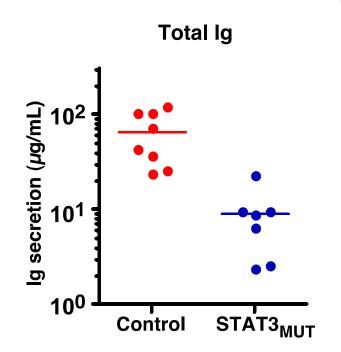
How do defects in STAT3 explain the phenotype of AD-HIES patients?

- 1. Opportunistic infections
 - CD4⁺ T cell defect in generating Th17 cells (require STAT3cytokines IL-6, IL-21, IL-23)

(Milner et al *Nature* 2008; Ma et al *JEM* 2008; de Beaucoudrey et al *JEM* 2008; Renner et al *JACI* 2008)

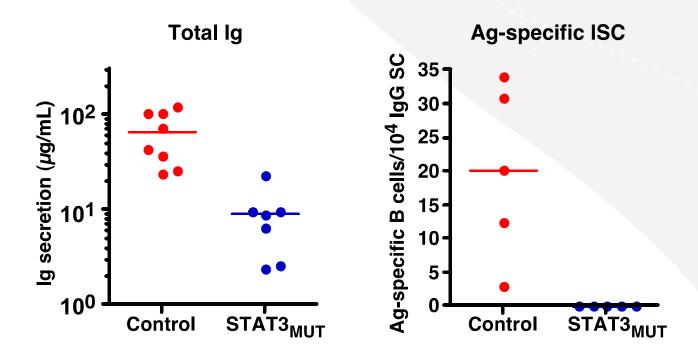
- 2. Humoral (antibody) defects
- 3. Atopic disease

1. Opportunistic infections:

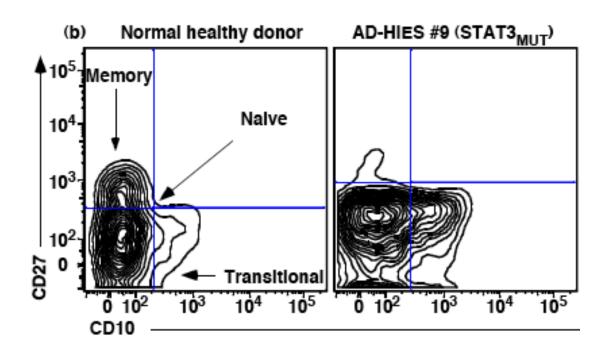

2. Humoral defects:

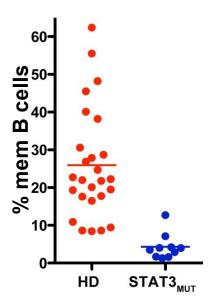
- STAT3 loss-of-function (LOF) patients have normal lg levels but often lack Ag-specific Abs
- 3. Atopic disease

STAT3 LOF B cells can secrete polyclonal, but not Ag-specific lg *in vitro*

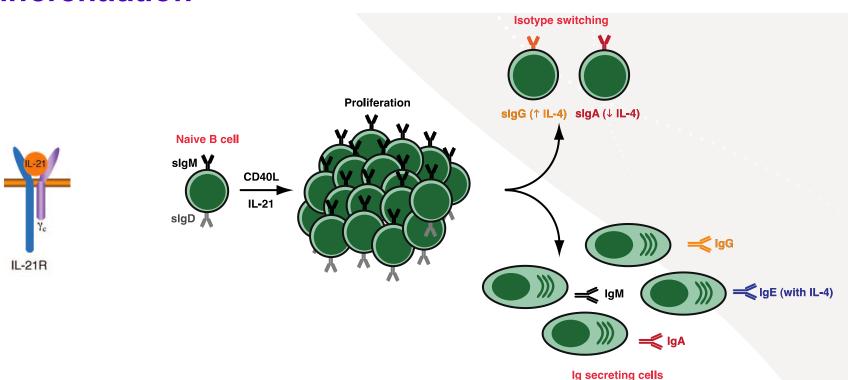

- polyclonally stimulate B cells in vitro for 7 days
- determine Ig secretion and Ag (tetanus) specific B cells

STAT3 LOF B cells can secrete polyclonal, but not Ag-specific lg *in vitro*

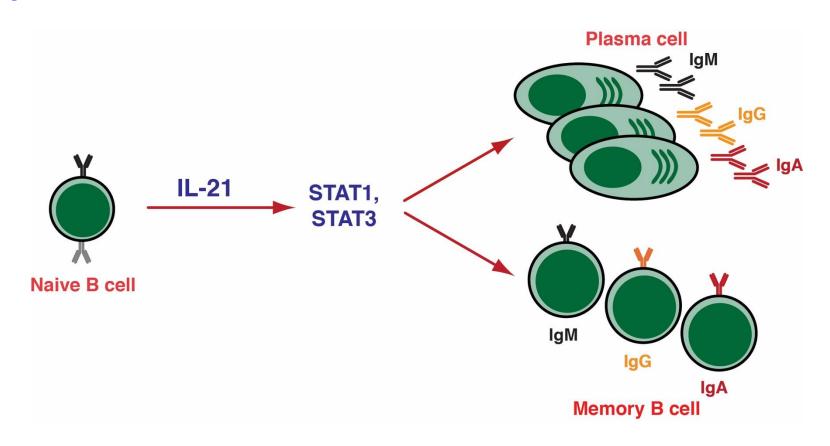



- polyclonally stimulate B cells in vitro for 7 days
- determine Ig secretion and Ag (tetanus) specific B cells

STAT3 mutations impairs the generation of memory B cells

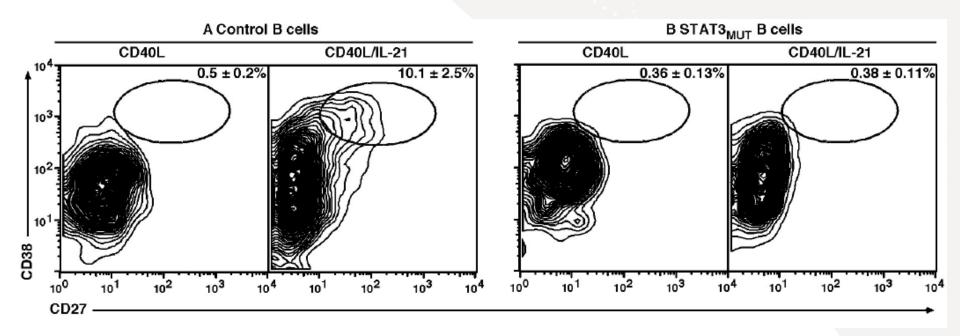


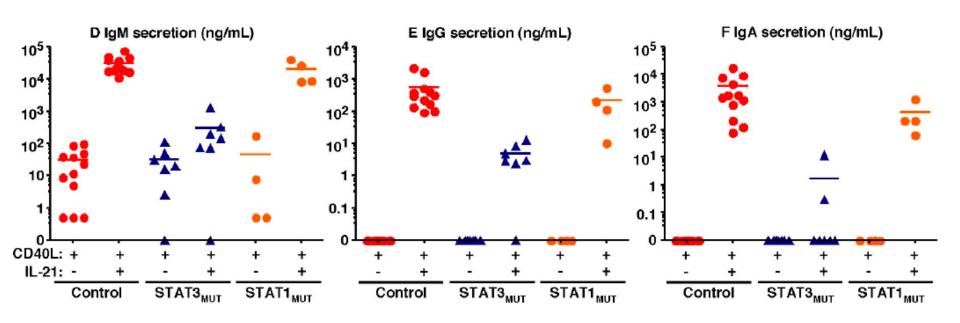
IL-21 is a potent inducer of human B cell differentiation


- Pene et al., 2004. J Immunol
- Ettinger et al., 2005. J Immunol
- Good et al., 2006. J Immunol

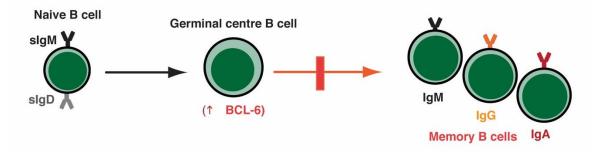
- Bryant et al., 2007. J Immunol
- Kuchen et al., 2007. J Immunol
- Avery et al., 2008. J Immunol

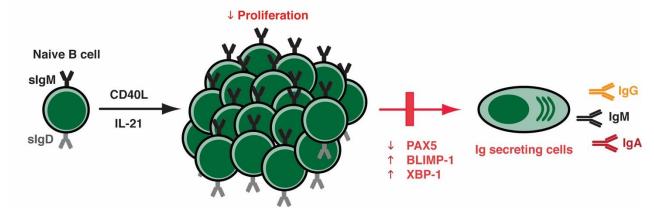
- Diehl et al., J Immunol 2008
- Avery et al., 2008. Blood
- Dullaers et al., 2009. Immunity


Q: Is IL-21 induced human B cell differentiation dependent on STAT3?

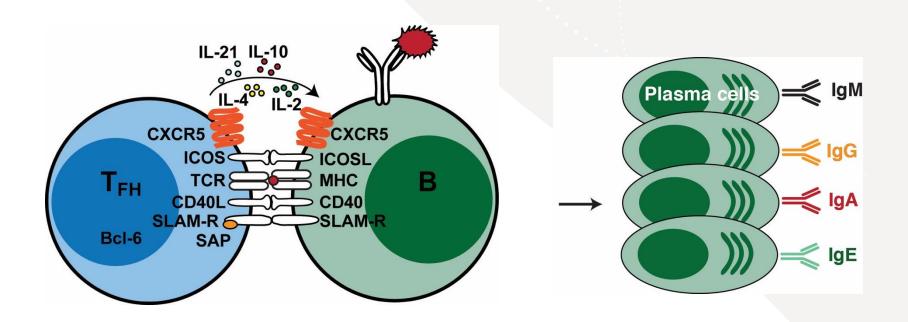

STAT3 is required for IL-21-mediated differentiation of naive B cells into CD38+CD27+ plasmablasts

STAT3, but NOT STAT1, is required for IL-21-mediated differentiation of naive B cells into Ig-secreting cells

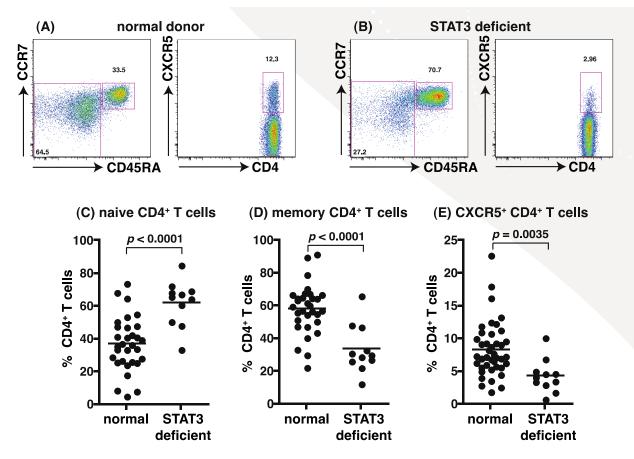



Roles of STAT3 in regulating B-cell responses

(1) Generation of long-lived memory B cells in vivo



(2) IL-21-induced Ig secretion, but not isotype switching, by naive B cells in vitro

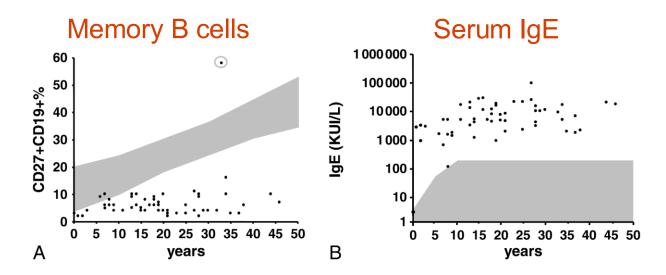

What about T follicular helper (Tfh) cells?

Decrease in CXCR5⁺CD4⁺ Tfh cells in STAT3 LOF patients

Defective secretion of IL-21 by STAT3 LOF memory CD4⁺ T cells *ex vivo*

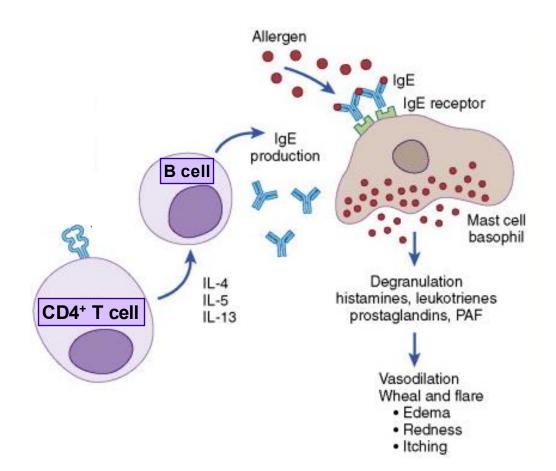
How do defects in STAT3 explain the phenotype of AD-HIES patients?

- 1. Opportunistic infections
- 2. Humoral (antibody) defects
 - B cell intrinsic: defect in generating memory/effector B cells
 - Requirement for IL-21 (Avery et al JExpMed 2010)
 - B cell extrinsic: defect in generating T follicular helper cells
 - Requirement for IL-6, IL-12, IL-21, IL-23, IL-27 (Ma et al *Blood* 2012; Batten et al *JExpMed* 2010)
- 3. Atopic disease

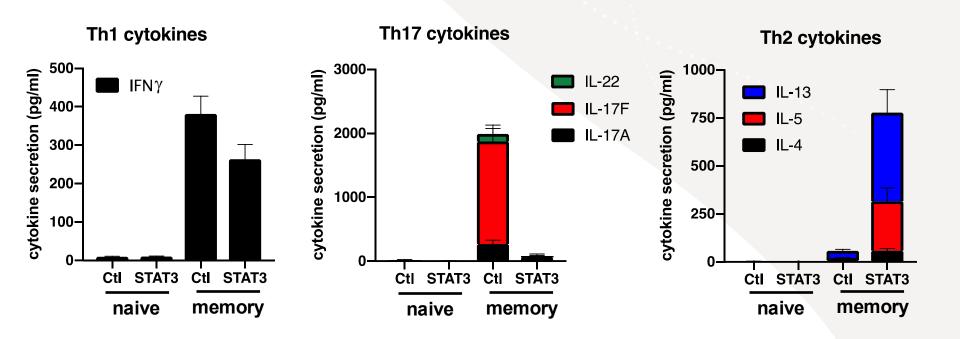

How do defects in STAT3 explain the phenotype of AD-HIES patients?

- 1. Opportunistic infections
- 2. Humoral (antibody) defects
- 3. Atopic disease

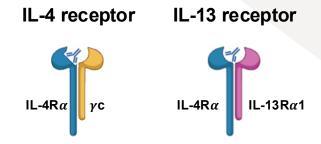
Why do STAT3 LOF patients get Hyper IgE?



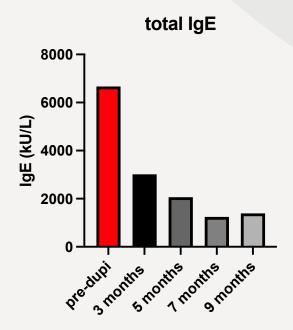
- STAT3 LOF patients have clear humoral defects
- STAT3 LOF patients have increased serum IgE and associated atopic disease


CD4⁺ T cells (IL-4/5/13) cause allergy

STAT3 LOF CD4⁺ T cells have increased Th2 cytokine production



Dupilumab: mAb against IL-4R (IL-4/IL-13)


mAb binds to the IL-4R α subunit of the IL-4 and IL-13 receptors

Dupilumab: STAT3 LOF patient resulted in decrease serum IgE

 STAT3 LOF patient treated with Dupilumab because of increase Th2 cytokines

Peter McNaughton

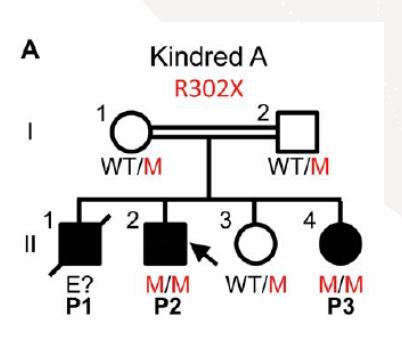
Summary 1

- CD4⁺ T cells from STAT3 LOF patients are skewed towards IL-4/5/13 producing cells
- Th2 cytokine producing cells likely contribute to allergies in these patients
 - STAT3 restrains Th2 cells

How does STAT3 restrain Th2 cytokine production?

2018: Unique case of HIES (Jean-Laurent Casanova, Anne Puel, Vivien Beziat)

- hyper IgE
- atopic dermatitis, eosinophilia, allergy
- recurrent Staph infections
- lung disease (bronchiecstasis, pneumatoceles, pneumonia, infections)
- chronic mucocutaneous candidiasis
- connective tissue defects (mild)



NOT STAT3-deficient patient as "autosomal recessive" form of HIES!

Performed whole genome sequencing

Summary 2

- ZNF341 regulates expression of STAT3
- ZNF341 and STAT3-deficient CD4⁺ T cells are skewed towards Th2 cytokine producing cells.
 - o likely to contribute to allergies/atopic disease in these patients

SCIENCE IMMUNOLOGY | RESEARCH ARTICLE

IMMUNODEFICIENCIES

A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity

Vivien Béziat^{1,2}*, Juan Li^{3†}, Jian-Xin Lin^{4†}, Cindy S. Ma^{5,6†}, Peng Li^{4†}, Aziz Bousfiha^{7‡}, Isabelle Pellier^{8‡}, Samaneh Zoghi^{3,10,11‡}, Safa Baris^{12‡}, Sevgi Keles^{13‡}, Paul Gray^{1,6,15‡}, Ning Du^{4‡}, Yi Wang^{1,2‡}, Yoann Zerbib^{1,2‡}, Romain Levy^{1,2‡}, Thibaut Leclercq^{1,2‡}, Frédégonde About^{1,2}, Ai Ing Lim^{16,17}, Geetha Rao⁵, Kathryn Payne⁵, Simon J. Pelham^{5,6}, Danielle T. Avery⁵, Elissa K. Deenick^{5,6}, Bethany Pillay^{5,6}, Janet Chou^{18,19}, Romain Guery^{1,2,20}, Aziz Belkadi^{1,2}, Antoine Guérin^{1,2}, Mélanie Migaud^{1,2}, Vimel Rattina^{1,2}, Fatima Ailal⁷, Ibtihal Benhsaien⁷, Matthieu Bouaziz^{1,2}, Tanwir Habib^{2,1}, Damien Chaussabel^{2,1}, Nico Marr^{2,1}, Jamel El-Benna^{2,2}, Bodo Grimbacher^{2,3}, Oril Wargon^{2,4}, Jacinta Bustamante^{1,2,3,2,5}, Bertrand Boisson^{1,2,3}, Ingrid Müller-Fleckenstein²⁶, Bernhard Fleckenstein²⁶, Marie-Olivia Chandesris^{2,7,28}, Matthias Titeux^{2,29}, Sylvie Fraitag³⁰, Marie-Alexandra Alyanakian³¹, Marianne Leruez-Ville^{32,33}, Capucine Picard^{2,25,33,34}, Isabelle Meyts³⁵, James P. Di Santo^{16,17}, Alain Hovnanian^{2,29,36,38}, Ayper Somer³⁷⁵, Ahmet Ozen¹²⁶, Nima Rezaei^{9,10,115}, Talal A. Chatila^{18,19†}, Laurent Abel^{1,2,3†}, Warren J. Leonard^{4†}, Stuart G. Tangve^{5,6†}, Anne Puel^{1,2,3+*}, Jean-Laurent Casanova^{1,2,3,3}, Jasabe⁸,

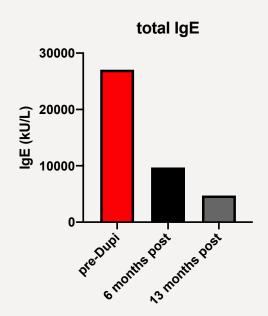
SCIENCE IMMUNOLOGY | RESEARCH ARTICLE

IMMUNODEFICIENCIES

ZNF341 controls STAT3 expression and thereby immunocompetence

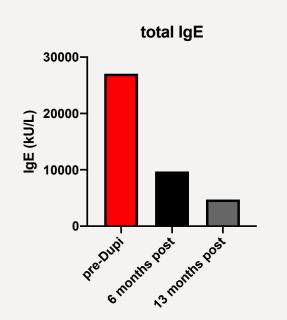
Stefanie Frey-Jakobs¹*, Julia M. Hartberger¹*, Manfred Fliegauf¹*, Claudia Bossen¹*, Magdalena L. Wehmeyer¹, Johanna C. Neubauer¹, Alla Bulashevska¹, Michele Proietti¹, Philipp Fröbel¹, Christina Nöltner¹, Linlin Yang¹, Jessica Rojas-Restrepo¹, Niko Langer¹, Sandra Winzer¹, Karin R. Engelhardt², Cristina Glocker^{1†}, Dietmar Pfeifer³, Adi Klein⁴, Alejandro A. Schäffer⁵, Irina Lagovsky^{6,7}, Idit Lachover-Roth⁸, Vivien Béziat^{9,10}, Anne Puel^{9,10,11}, Jean-Laurent Casanova^{9,10,11,12,13}, Bernhard Fleckenstein¹⁴, Stephan Weidinger¹⁵, Sara S. Kilic^{16‡}, Ben-Zion Garty^{6,17‡}, Amos Etzioni^{18‡}, Bodo Grimbacher^{1,19,20‡5}

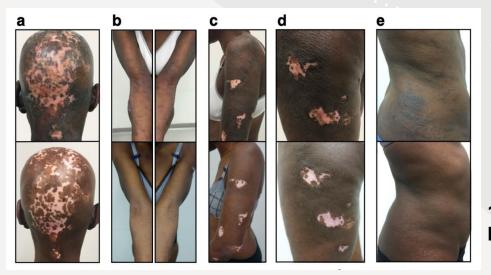
Dupilumab: mAb against IL-4R (IL-4/IL-13)



 ZNF341-deficient patient treated with Dupilumab because of increase Th2 cytokines

Dupilumab: mAb against IL-4R (IL-4/IL-13)


 ZNF341-deficient patient treated with Dupilumab because of increase Th2 cytokines



Dupilumab: mAb against IL-4R (IL-4/IL-13)

 ZNF341-deficient patient treated with Dupilumab because of increase Th2 cytokines

Pre-Dupilumab

12-months post-Dupilumab

What STAT3 activating cytokine(s) inhibit Th2 cells?

• *IL-21?*

- IL-21 or IL-21R deficiency results in combined immunodeficiency (recurrent respiratory infections, impaired humoral immunity, severe cryptosporidiosis)
- 50% of IL-21R-deficient patients have mild elevation serum IgE, 20% susceptible to asthma

• *IL-10?*

- IL-10 or IL-10R deficiency results in inflammatory bowel disease (IBD)
- No reports of atopic disease or increased serum IgE

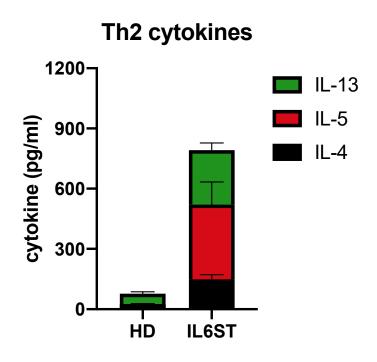
• *IL-23?*

- IL-23R deficiency Mendelian susceptibility to mycobacterial disease
- No reports of atopic disease or increased serum IgE

WGS hyper IgE syndrome patients

(Vivien Beziat, Anne Puel, Jean-Laurent Casanova)

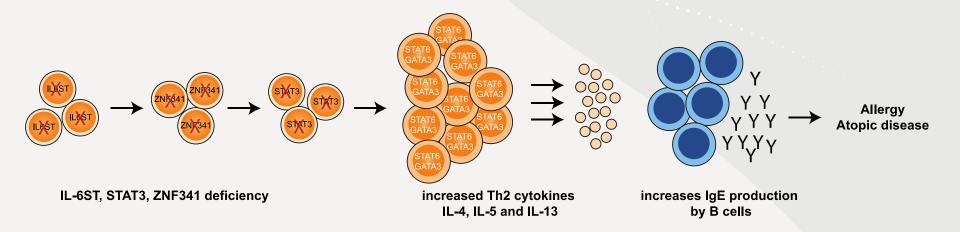
ARTICLE


Dominant-negative mutations in human *IL6ST* underlie hyper-IgE syndrome

IL-6ST/GP130

- Receptor for IL-6 family of cytokines (IL-6, IL-11, IL-27, leukemia inhibitory factor, oncostatin M)
- gp130-deficient mice die in utero of myocardial, haematological and skeletal defects
- Skeletal symptoms due to defects in IL-11 signalling
- Atopic disease, hyper IgE due to defects in IL-6

IL-6ST deficiency functionally phenocopies STAT3 and ZNF341 mutations



Summary

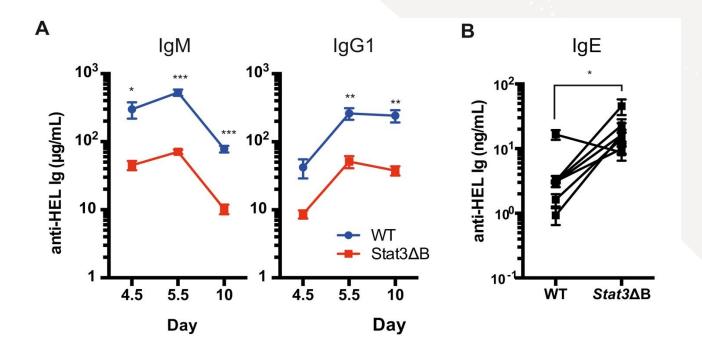
- IL-6 working via ZNF341 and STAT3 restrains Th2 cells
 - Absence of IL-6, ZNF341 or STAT3 results in atopic disease

- 1. Opportunistic infections:
- 2. Humoral defects:
- 3. Atopic disease
 - B cell extrinsic increased Th2 cytokine
 - B cell intrinsic role?

Increased IgE in STAT3 LOF: B cell intrinsic role

Mouse

LETTER TO THE EDITOR · Volume 138, Issue 5, P1455-1458.E3, November 2016


B-cell—specific STAT3 deficiency: Insight into the molecular basis of autosomal-dominant hyper-IgE syndrome

Alisa Kane, MB, BS a,b · Anthony Lau a,c · Robert Brink, PhD a,b · Stuart G. Tangye, PhD a,b · Elissa K. Deenick, PhD a,b

Increased IgE in STAT3 LOF: B cell intrinsic role

Mouse

Increased IgE in STAT3 LOF: B cell intrinsic role

Human – increased serum IgE

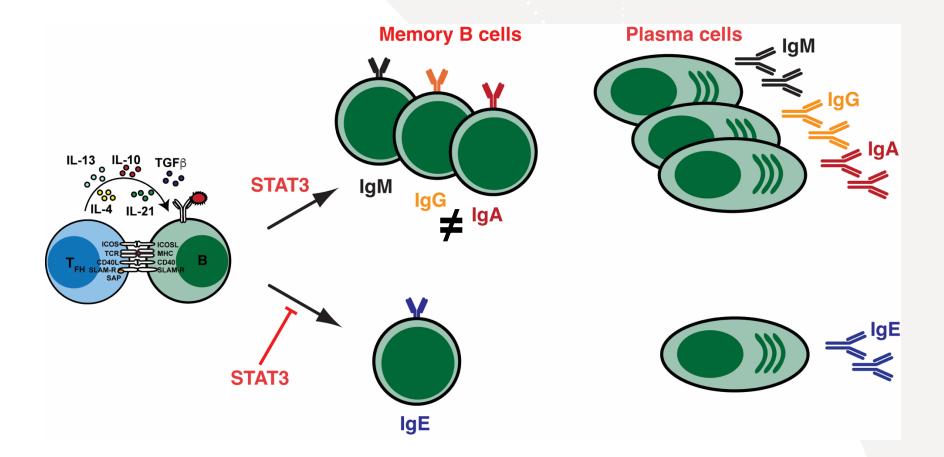
European Journal of Immunology

Immunodeficiencies and autoimmunity

Short Communication

Somatic mosaicism in B cells of a patient with autosomal dominant hyper IgE syndrome

Julio C. Alcántara-Montiel^{1,4}, Tamara Staines-Boone², Gabriela López-Herrera³, Laura Berrón-Ruiz³, Carlos R. Borrego-Montoya² and Leopoldo Santos-Argumedo¹ Apart from that, the HIES mosaic patient showed plaques of erythema with scales and pustules in the nostrils, anterior thorax, gluteal, and inguinal folds. The HIES mosaic patient had cold abscesses in several body parts such as the scalp, frontal region, and limbs. He was treated with antibiotics and antifungals, and on some occasions, surgical drainage was performed. The patient also had high concentrations of IgE range (552–4988 IU/mL), normal eosinophil count range (58–700 cell/µL) see Supporting Information Tables 4 and 5, but low compared to the classical HIES patient; in addition, *Staphylococcus aureus* was isolated several times. Nonimmunological features such as scoliosis, high palate, and hyperextensibility were also present.


Upon physical examination the HIES mosaic patient did not

- 1. Opportunistic infections:
- 2. Humoral defects:
- 3. Atopic disease
 - B cell extrinsic increased Th2 cytokine
 - B cell intrinsic role

STAT3: an immune dichotomy

What is the nature of human IgE?

- Difficult question to answer as:
 - IgE is tightly regulated (~0.002% serum Ab)
 - circulating IgE cells are hard to detect

Published in final edited form as:

J Allergy Clin Immunol. 2019 July; 144(1): 336–339.e6. doi:10.1016/j.jaci.2019.04.001.

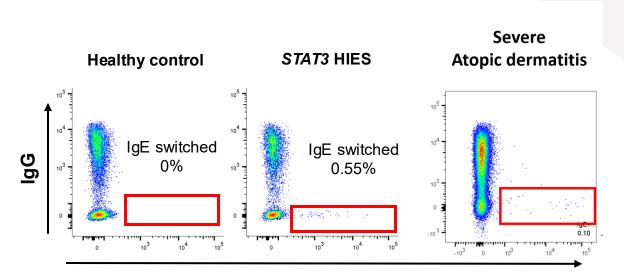
Human BCR analysis of single-sorted, putative IgE+ memory B cells in food allergy

Rodrigo Jiménez-Saiz, PhD^{1,2,†}, Yosef Ellenbogen, BHSc^{1,2,†}, Kelly Bruton, BSc^{1,†}, Paul Spill, BHSc¹, Doron D. Sommer, MD³, Hermenio Lima, MD, PhD⁴, Susan Waserman, MD, MSc⁴, Sarita U. Patil, MD², Wayne G. Shreffler, MD, PhD², Manel Jordana, MD, PhD^{1,*}

What is the nature of human IgE?

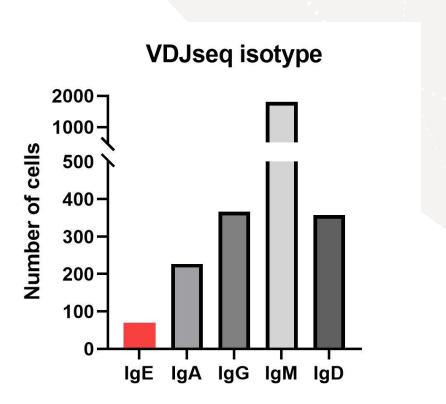
- Difficult question to answer as:
 - IgE is tightly regulated (~0.002% serum Ab)
 - circulating IgE cells are hard to detect

TABLE I. Quantification of IgE+ MBCs in healthy and allergic donors

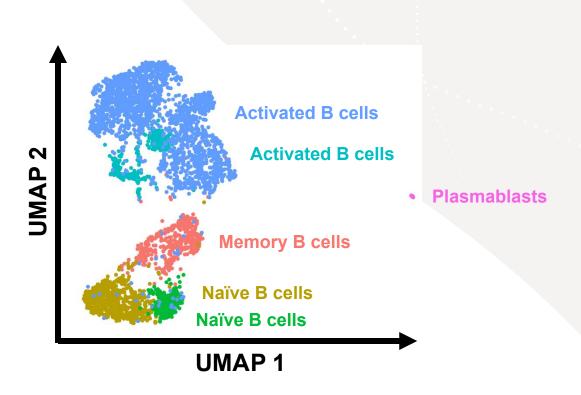

Tissue	Donor ID	Allergic status	Mononuclear cells	Purified B cells	Events in CD20 ⁺ CD38 ^{lo-med} gate	Events in IgE gate	Sorted cells	IGHE amplification
Blood	P001	-	250,000,000	9,540,000	600,304	21	6	0
	P003	_	123,000,000	8,640,000	169,267	29	12	0
	P007	_	125,000,000	2,685,000	645,055	5	3	0
	P009	_	98,600,000	4,140,000	325,734	12	12	0
	P014	_	109,000,000	2,820,000	605,535	8	8	0
	P021	_	173,000,000	26,000,000	440,963	2	1	0
	P025	_	86,600,000	1,401,000	246,090	20	20	0
	P026	_	94,200,000	1,494,000	250,018	14	10	0
	P030	_	78,800,000	1,128,000	132,157	4	4	0
	P031	_	85,400,000	945,000	172,260	4	4	0
	P008	Peanut	125,000,000	8,160,000	335,641	20	20	0
	P011	Peanut	250,000,000	7,150,000	520,021	6	3	0
	P013	Peanut	210,000,000	5,450,000	690,015	13	12	0
	P016	Peanut	125,000,000	1,068,000	143,759	5	5	0
	P017	Peanut	125,000,000	1,467,000	213,345	11	10	0
	P020	Peanut	124,000,000	3,900,000	537,856	4	1	0
	P024	Peanut	71,800,000	1,026,000	166,313	3	1	0
	P028	Peanut	94,800,000	1,440,000	157,340	1	1	0
	P029	Peanut	54,000,000	1,467,000	277,359	2	2	0
Tonsils	TP-9	-	10,000,000	_	204,125	10	7	0
	TP-10	_	10,000,000	_	68,461	15	12	0
	TP-11	_	10,000,000	_	56,127	6	6	0

Jimenez-Saiz et al 2019 JACI

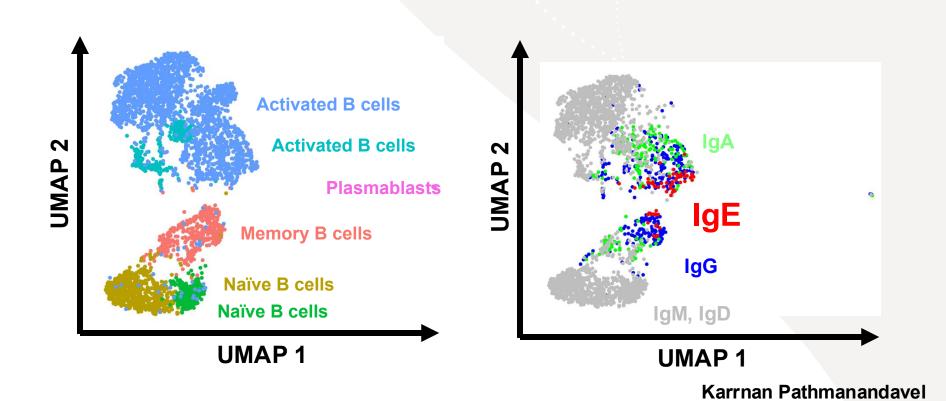
What is the nature of human IgE?


- Difficult question to answer as:
 - IgE is tightly regulated (~0.002% serum Ab)
 - circulating IgE cells are hard to detect

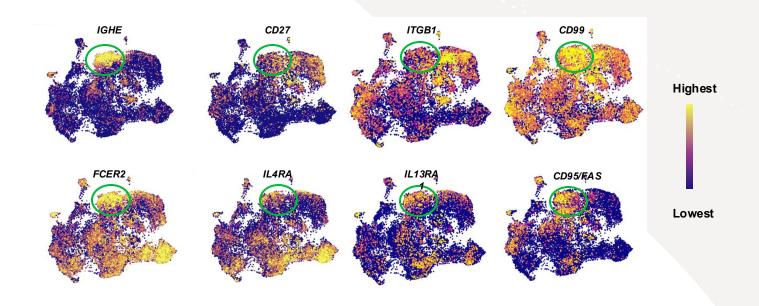
Karrnan Pathmanandavel


sc-RNA-seq: IgE switched B cells are present in STAT3 LOF patients

Single cell RNA/VDJ-seq in STAT3-deficient patient



Karrnan Pathmanandavel


IgE switched B cells are present in STAT3-deficient patient

scRNA seq: IgE⁺ B cells in STAT3 LOF patients

scRNA seq: IgE⁺ B cells resemble MBC2

ORIGINAL ARTICLE

Basic and Translational Allergy Immunology

Allergy Server Server & WILEY

IgG memory B cells expressing IL4R and FCER2 are associated with atopic diseases

Carlos J. Aranda^{1,2} ○ | Edgar Gonzalez-Kozlova³ ○ | Sean P. Saunders⁴ | Weslley Fernandes-Braga^{1,2} | Miyo Ota^{1,2} | Sriram Narayanan⁵ ○ | Jin-Shu He⁵ | Ester Del Duca⁶ | Bose Swaroop⁶ | Sacha Gnjatic^{2,7} | Gail Shattner⁴ | Joan Reibman⁴ Nicholas A. Soter⁸ | Emma Guttman-Yassky⁶ | Maria A. Curotto de Lafaille^{1,2} ⊙

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

ALLERGY

CD23⁺IgG1⁺ memory B cells are poised to switch to pathogenic IgE production in food allergy

Miyo Ota^{1,2}*†‡, Kenneth B. Hoehn³†§, Weslley Fernandes-Braga^{1,2}†, Takayuki Ota⁴, Carlos J. Aranda^{1,2}¶, Sara Friedman^{1,2}, Mariana G. C. Miranda-Waldetario^{1,2}, Jamie Redes^{1,2,5}, Maria Suprun¹#, Galina Grishina¹, Hugh A. Sampson¹, Alefiyah Malbari⁶**, Steven H. Kleinstein^{3,7,8}, Scott H. Sicherer¹, Maria A. Curotto de Lafaille^{1,2}*

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

ALLERGY

Type 2-polarized memory B cells hold allergen-specific lgE memory

Joshua F. E. Koenig¹*†, Niels Peter H. Knudsen²†, Allyssa Phelps¹†, Kelly Bruton¹†‡, Ilka Hoof²§, Gitte Lund², Danielle Della Libera¹, Anders Lund², Lars Harder Christensen², David R. Glass³, Tina D. Walker¹, Allison Fang¹, Susan Waserman¹, Manel Jordana¹, Peter S. Andersen²*

- 1. Opportunistic infections:
- 2. Humoral defects:
- 3. Atopic disease
 - What about food allergies?

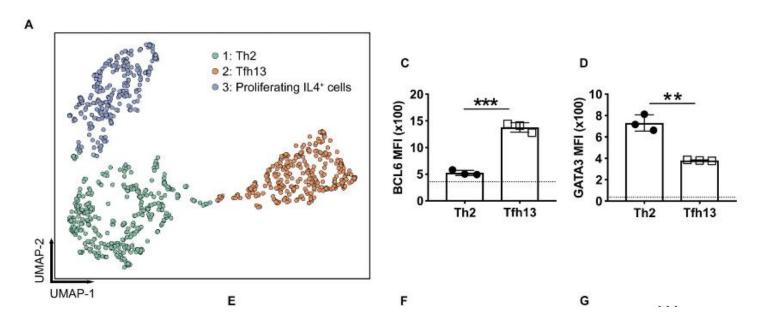
Tfh13 cells drive IgE

Science

RESEARCH ARTICLES

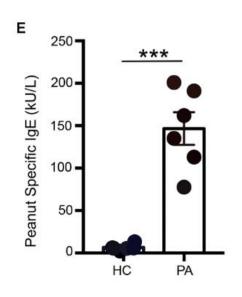
Cite as: U. Gowthaman et al., Science 10.1126/science.aaw6433 (2019).

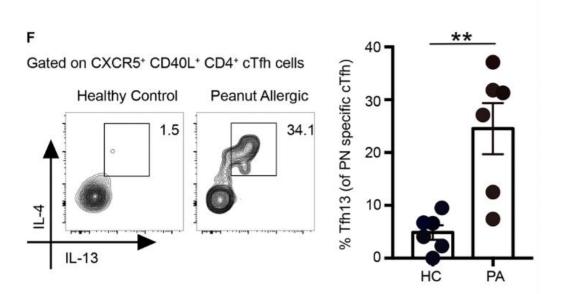
Identification of a T follicular helper cell subset that drives anaphylactic IgE


Uthaman Gowthaman^{1,2}, Jennifer S. Chen^{1,2}*, Biyan Zhang^{1,2}*, William F. Flynn³, Yisi Lu², Wenzhi Song², Julie Joseph¹, Jake A. Gertie^{1,2}, Lan Xu^{1,2}, Magalie A. Collet³, Jessica D. S. Grassmann³, Tregony Simoneau⁴, David Chiang⁵, M. Cecilia Berin⁵, Joseph E. Craft², Jason S. Weinstein⁶, Adam Williams^{3,7}*†, Stephanie C. Eisenbarth^{1,2}*†

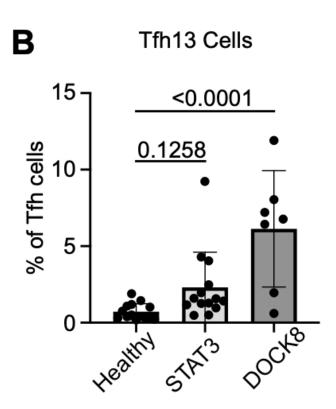
- Produce IL-4, IL-5 IL-13, IL-21
- Express GATA3 and BCL6
- Level of IL-21 lower than other Tfh cells

Tfh13 distinct from Th2




Mouse

Human with peanut allergy have Tfh13 cells


Current projects

- Looking in different IEI to see what restraisn and promotes Tfh13 cells
- Compare Tfh13 population between food allergy vs atopic dermatitis vs allergic rhinitis etc
- Assess Tfh13 population after Dupilumab treatment
 - useful in treating food anaphylaxis

Tfh13 cells are elevated in DOCK8 def but not STAT3 LOF

Garvan Institute of Medical Research

Ma Lab

- Dr Corinne Mack
- Dr Antoine Guerin
- Geetha Rao
- Francis Gracias Flor
- Dr Shivani Patel
- Dr Alex Crawford
- Mia Gruzin
- Lisa Reed
- Alex Manefield
- Ashley Suh
- Felicity Tu

Tangye Lab

- Prof Stu Tangye
- Danielle Priestley
- Dr Karrnan
 Pathmanandavel
- Dr Erika Della Mina
- Dr Tina Nguyen
- Dr Joe Mackie
- Dena Al-Rifai
- Pat O'Young
- Monika Vesse
- James Flaherty
- Alexandra Tonkin
- Matali Kodolikar

Acknowledgements

Collaborators - Australia

Paul Gray - SCH, Sydney Kahn Preece – John Hunter Hospital Newcastle **Dan Suan - Westmead Hospital Lucinda Berglund - Westmead Hospital** Melanie Wong - Children's Hospital Westmead Stephen Adelstein – RPAH, Sydney Nicolas Urriola - RPAH, Sydney Shruti Swamy - RPAH, Sydney Andy McLean-Tooke - Sir Gairdner and **Perth Children's Hospital** Martyn French - Royal Perth Hospital Peter McNaughton – QLD Children's Hos Jane Peake - Children's Hospital Brisbane Jo Smart – RCH, Melbourne Winnie Tong – St Vincent's Hospital

Alisa Kane - St Vincent's/Liverpool Hospitals

Tri Phan - St Vincent's Hospital

Collaborators - And Beyond

Isabelle Meyts – Catholic University, Leuven Peter Arkwright - Manchester Children's Hospital Masao Kobayashi - Hiroshima University, Japan Satashi Okada - Hiroshima University, Japan Capucine Picard – Hospital Necker Kaan Boztug - CeMM, Vienna Bodo Grimbacher - CCI, Freiburg Klaus Warnatz - CCI, Freiburg Jennifer Stoddard - NIH Steve Holland – NIH Yoshiyuki Minegishi – Tokyo Medical Uni, Japan Vivien Beziat – INSERM Anne Puel – INSERM Gulbu Uzel - NIAID, NIH Jean-Laurent Casanova - Rockefeller University Stephanie Eisenbarth – Northwestern Uni Uthaman Gowthaman - Uni of Massachusetts