

Clinical validation of the updated Korean diagnostic criteria for atopic dermatitis: a multicenter cross-sectional study

Suji Kim^{1,†}, Seungah Yoo^{2,†}, Jaeeun Song³, Jung Eun Kim⁴, Ji Hae Lee⁵, Hyun Ji Lee⁶, Kyung Ho Lee⁷, Yu Ri Woo⁸, Young Bok Lee⁹, Sang Hyun Cho⁸, Ji Hyun Lee ^{1,2,*}

Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea. Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

³University of Ulsan College of Medicine, Seoul 05505, Korea ⁴Department of Dermatology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea

⁵Department of Dermatology, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea ⁶Department of Dermatology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea

⁷Department of Dermatology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Korea ⁸Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea

⁹Department of Dermatology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Korea

Background: Why diagnostic criteria matter

Why are diagnostic criteria for AD so important?

AD cannot be diagnosed using definitive diagnostic tools.

There are currently no **objective tests** or **biomarkers** that can clearly confirm atopic dermatitis.

Diagnosis depends entirely on clinical observation and patient history.

Clinical presentation varies significantly between individuals.

Symptoms differ depending on age, affected areas, genetic background, and environmental factors.

It often requires differentiation from similar conditions such as contact dermatitis, seborrheic dermatitis, or psoriasis.

Accurate diagnosis enables timely and appropriate treatment.

When diagnostic criteria are impractical or unclear, diagnosis can be delayed, leading to postponed treatment and poor long-term disease control. Diagnosis is the first step toward proper management.

Existing international criteria may not reflect Asian AD phenotypes.

Most criteria were developed based on Western populations and may show **reduced sensitivity** in **Asian patients**, including **Koreans**—raising the risk of **underdiagnosis**.

Background: Why diagnostic criteria matter

Why was it necessary to revise the Korean criteria?

- The 2005 KADA criteria were based on the Hanifin
 Rajka system, requiring multiple major and minor items, making them complex and impractical.
- They included nonspecific features and testbased components (e.g., IgE, skin prick test), limiting their use in routine clinical settings.
- An update was needed to improve clinical usability, diagnostic sensitivity, and reflect Korean AD phenotypes.

Updated diagnostic criteria for atopic dermatitis by Korean Atopic Dermatitis Association.

Diagnostic Criteria (all three below are required)

- 1. Pruritus
- 2. Eczema with age-specific pattern
 - i. Face, neck and extensor involvement in infants
 - ii. Current or previous flexural lesions in any age group
- 3. Chronic or relapsing history

Diagnostic aids

- 1. Xerosis
- 2. Immunoglobulin E reactivity
- 3. Hand-foot eczema
- 4. Periorbital changes
- 5. Periauricular changes
- 6. Perioral changes
- 7. Nipple eczema
- 8. Perifollicular accentuation
- 9. Family or personal history of atopy

Study Objectives & Design

Objective

To validate the updated Korean diagnostic criteria for AD by comparing their diagnostic accuracy with previous KADA and JDA criteria.

Study design

Multicenter, cross-sectional observational study conducted across 7 university hospitals in South Korea.

Participants

Total **312 participants**: 231 AD patients and 81 non-AD controls with other skin conditions.

Enrollment

Participants were initially diagnosed using Hanifin & Rajka criteria, but H&R was excluded from final analysis to avoid bias.

Analysis

Diagnostic performance was evaluated using sensitivity, specificity, PPV, NPV, Youden's index, and error rate.

Results

Patient Characteristics

Total participants: 312

• AD group: 231 patients

• Control group: **81** patients with non-AD dermatoses

No significant difference in age or sex

Age: AD **27.95**, Control **33.84** (p = 0.116)

Female %: both groups ~41%

- AD group had significantly higher disease severity **EASI score**: AD **12.4**, Control **3.5** (p < 0.001)
- Serum IgE was markedly elevated in AD group **1830** vs **53** IU/mL (p < 0.001)
- Early onset in most AD patients 82.7% developed AD before age 18
- Eosinophil % and ECP levels were also higher in AD Eosinophils: **6.76 vs 3.21%**

ECP: 90.9 vs 51.5 ng/mL

Variable	non-AD (N=81)	AD (N=231)	P-value
Age (years)	33.84±18.72	27.95±11.14	0.116
Sex			0.797
female	35 (43.21%)	96 (41.56%)	
male	46 (56.79%)	135 (58.44%)	
EASI score (N=78 / 225)	3.48±7.44	12.38±10.50	< 0.001
mild (<6)	62 (76.54%)	87 (37.66%)	< 0.001
moderate (≥6, <18)	13 (16.05%)	63 (27.27%)	< 0.001
severe (≥18)	3 (3.70%)	77 (33.33%)	< 0.001
Total IgE (IU/mL, N=53 / 142)	53.22±148.35	1830.83±3395.83	<0.001
AD onset (years)		8.24±10.10	
childhood onset (age <18)		191 (82.68%)	
adult onset (age ≥18)		19 (8.23%)	
Laboratory findings			
Eosinophil count	0.24±0.16	2296.12±26210.6	
(10^9/L, N=18 / 131)	0.24±0.10	6	
ESR (mm/h, N=30 / 133)	4.77±4.57	4.78±5.87	
CRP (mg/dL, N=30 / 144)	0.20 ± 0.49	0.53±1.96	
WBC diff. eosinophil	2 24 2 44	6.76 5.45	
(%, N=37 / 171)	3.21±2.41	6.76±5.15	
LDH (U/L, N=30 / 92)	212.40±58.96	239.86±80.02	
CPK (U/L, N=30 / 78)	104.38±71.36	110.60±57.78	
HBsAg positive (N=20 / 67)	0 (0%)	23 (34.32%)	
HBsAb (IU/L, N=15 / 135)	238.76±370.07	131.74±311.04	
25(OH)vitamin D	32.08±14.31	23.03±11.84	
(ng/mL, N=17 / 75)	3∠.00±14.31	∠ა.∪ა±11.04	
ECP (ng/mL, N=6 / 47)	51.51±27.15	90.94±56.86	

Results

Diagnostic Performance Comparison

Comparator	Sensitivity (%)	P-value (vs. Updated KADA)	Specificity (%)	P-value (vs. Updated KADA)	PPV (%)	NPV (%)	Youden's Index	Error Rate
Updated KADA	63.20%	-	82.72%	-	91.01%	44.10%	0.459	31.41%
Previous KADA	61.04%	0.815	88.89%	0.424	94.01%	44.44%	0.499	31.73%
JDA	47.62%	<0.001	95.06%	0.002	96.49%	38.89%	0.427	40.06%

- Updated KADA had the highest sensitivity (63.2%)
- Updated KADA showed the lowest error rate (31.4%)
- → Better at identifying **mild or atypical cases** compared to other criteria.
- → Best balance between sensitivity and specificity.

PPV was >90% across all criteria

JDA had the highest specificity (95.1%)

- → But lowest sensitivity (47.6%) and highest error rate (40.1%).

→ High reliability when AD is diagnosed.

Results

Diagnostic Value of Clinical Features

	Prevalence in AD patients (N=231, %)		Sensitivity	Specificity			Youden's			
Symptoms	total	mild	moderate to	(%)	(%)	PPV (%)	NPV (%)	Index	Error Rate	P-value
Pruritus	88.31%	80.46%	95.71%	90.04%	50.00%	83.87%	63.49%	0.400	20.19%	<0.001
Eczema with age-specific pattern	64.94%	52.87%	74.29%	66.67%	72.84%	87.50%	43.38%	0.394	31.41%	<0.001
Chronic or relapsing	84.85%	74.71%	96.57%	86.14%	67.95%	88.46%	63.25%	0.541	18.59%	<0.001
Family or personal history of atopy	81.82%	78.16%	86.43%	83.12%	60.49%	85.71%	55.68%	0.436	22.76%	<0.001
Immunoglobulin E hypersensitivity (cutoff 158)	57.58%	43.68%	67.86%	67.97%	67.90%	85.64%	42.96%	0.359	31.09%	<0.001
Xerosis	63 20%	48 28%	74 29%	64 34%	72 82%	87 05%	41 84%	0.372	33 01%	<0.001
Hand foot eczema	42.86%	40.23%	45.71%	44.16%	50.00%	71.83%	23.66%	0.442	54.17%	<0.001
Nipple eczema	20.35%	16.09%	23.57%	20.44%	60.49%	59.49%	21.12%	0.209	69.87%	<0.001
Perifollicular accentuation	28.57%	18.39%	35.71%	29.68%	76.54%	78.16%	27.79%	0.062	56.73%	<0.001
Perioral changes (cheilitis)	41.99%	32.18%	49.29%	42.86%	79.01%	85.35%	32.65%	0.219	47.12%	<0.001
Periauricular changes (periauricular eczema)	49.35%	32.18%	61.43%	50.65%	91.36%	94.35%	39.37%	0.420	38.78%	<0.001
Periorbital changes	41.99%	29.89%	50.71%	47.62%	87.65%	91.67%	36.97%	0.353	37.82%	<0.001
Atypical vascular response (white dermographism)	21.65%	11.49%	28.57%	22.06%	92.50%	89.47%	29.14%	0.146	65.06%	0.0011
Keratosis pilaris	29.87%	20.69%	36.43%	30.74%	82.72%	83.53%	29.51%	0.135	55.45%	0.0721
Pityriasis alba	8.23%	5.75%	10.00%	8.23%	87.65%	65.52%	25.08%	0.041	71.79%	0.1336
Hyperlinear palms	16.02%	17.24%	15.71%	16.02%	90.12%	82.22%	27.33%	0.061	63.78%	0.0024
Early-age onset	26.84%	24.14%	29.29%	27.68%	93.83%	92.75%	31.26%	0.215	58.33%	<0.001
Icthvosis	10.82%	4.60%	15.00%	10.87%	95.06%	86.21%	27.31%	0.059	67.63%	0.0029
Itch when sweating	74.89%	67.82%	81.43%	76.61%	71.60%	88.50%	51.79%	0.482	23.40%	<0.001
Tendency toward cutaneous infections	19.05%	16.09%	21.43%	19.05%	87.65%	81.48%	27.51%	0.067	64.42%	0.0194
Anterior neck folds	42.42%	24.14%	55.00%	43.28%	87.65%	90.91%	35.15%	0.309	39.10%	<0.001
Intolerance to wool and lipid solvents	46.75%	37.93%	53.57%	47.62%	85.19%	90.16%	36.31%	0.328	39.10%	<0.001
Course influenced by environmental/emotional factors	58.87%	44.83%	69.29%	59.74%	79.01%	89.03%	40.76%	0.388	30.77%	<0.001
Skin prick test reactivity	14.29%	14.94%	14.29%	15.22%	95.06%	89.74%	28.29%	0.103	64.74%	0.0011
Facial pallor/erythema	38.96%	34.48%	42.86%	40.25%	95.00%	95.83%	35.52%	0.353	33.01%	<0.001
Food intolerance	23.81%	31.03%	20.00%	25.44%	95.06%	93.55%	31.17%	0.205	60.26%	0.0424
Lichen amyloidosis	4.33%	1.15%	6.43%	4.33%	98.77%	90.91%	26.56%	0.031	68.91%	0.2536
Scalp eczema	41.56%	25.29%	52.86%	42.41%	86.42%	89.09%	34.47%	0.287	38.14%	<0.001
Symmetrical distribution	52.81%	35.63%	65.00%	54.12%	86.42%	91.92%	39.76%	0.405	30.77%	<0.001

- Core diagnostic features such as pruritus, agespecific eczema, and chronic course showed the highest sensitivity and predictive value.
- Top-performing diagnostic aids included hand-foot eczema (0.442), periauricular eczema (0.420), and itch when sweating (0.482).
- Low-performing features, including
 pityriasis alba, white dermographism, and
 hyperlinear palms, showed minimal diagnostic
 contribution and were excluded in the updated
 criteria.

Conclusion

Strengths and Limitations

Strengths

Multicenter clinical validation across 7 university hospitals

Highest sensitivity (63.2%) among criteria tested

Lowest error rate (31.4%)

No laboratory testing required – based on observation and history only

Easy to apply in primary care, outpatient clinics, and pediatrics

Limitations

Study included only **Korean patients** → Limited generalizability

Small control group (n = 81) → May reduce statistical power

NPV was low (44.1%) → Potential for underdiagnosis

Sensitivity improvement over previous KADA was **not statistically significa nt** (p = 0.815)

Validation in multi-ethnic or international cohorts is still needed

Conclusion

Clinical Implications & Future Directions

Clinical Implications

Quick and accurate diagnosis using 3 core features

Captures mild and atypical AD cases with improved sensitivity

No testing required – applicable in all care settings

Enables early treatment and supports long-term disease control

Future Directions

Validation in multi-ethnic populations needed

Tailoring criteria by age and disease severity

Research on clinical outcomes after implementation

Evaluate impact on QoL and treatment response

Summary and Take-home Message

- First clinical validation of the 2023 Korean AD criteria
- Demonstrated improved sensitivity, practicality, and real-world utility
- Balanced diagnostic performance
- Highest sensitivity (63.2%), lowest error rate (31.4%) among tested criteria
- Simple, observation-based structure
- Requires no lab testing ideal for daily clinical use
- Supports broader, earlier diagnosis and better patient access to care
- Future studies
- Needed in multi-ethnic populations and to assess treatment outcomes

Thank you for your attention.

I am presenting on behalf of the original authors.

For further questions or detailed inquiries, please contact:

Prof. Ji Hyun Lee

Chief of the Department of Dermatology / Professor

Seoul St. Mary's Hospital

College of Medicine, The Catholic University of Korea, Seoul

■ ejee@catholic.ac.kr