

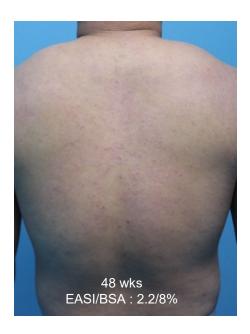
Serum Exosomal miRNAs as Predictive Biomarkers of Long-term Response Patterns to Dupilumab in Atopic Dermatitis

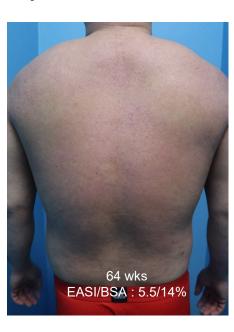
Learning objective: To explore molecular differences between durable and non-durable responders to dupilumab, focusing on exosomal miRNA-mediated regulatory networks. To identify potential pathogenic and prognostic biomarkers linked to treatment durability and recurrent flare-up patterns in atopic dermatitis.

Sul Hee Lee¹, Young Lip Park¹, Youin Bae²

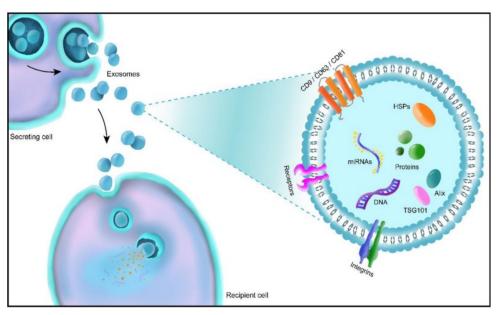
Department of Dermatology, Soonchunhyang University College of Medicine, Bucheon, South Korea¹ Department of Dermatology, Soonchunhyang University College of Medicine, Seoul, South Korea²

Conflict of Interest: The authors declare no conflicts of interest


Contact : dermalsh@schmc.ac.kr


Introduction

- Recent clinical data demonstrated that long-term treatment with dupilumab led to a clinically significant reduction in AD that was sustained over follow-up to 52 months
- However in real-world setting, long-term responses vary: some patients achieve durable remission, while others experience recurrent flares
- Non-durable responder with more thant 2 times of intermittent relapse after treated with dupilumab



- Although the definition is not yet well established, reports continue to describe non-durable responders, partial responders, and inadequate responders to dupilumab treatment.
- Non-durable responders who achieve therapeutic endpoint with subsequent partial loss of efficacy
 - acute AD flare, drug tolerance, or development of a secondary diagnosis

Introduction

Exosomes

- Membrane-bound EVs released from eukaryotic cells among with microvesicles, apoptotic bodies, etc.
 including DNA, microRNA, mRNA, and proteins
- May play in cell-to-cell signaling (intercellular communication)

Exosomal miRNAs in Atopic Dermatitis

- Stability: protected from RNase degradation and more reliable than free serum miRNAs
- <u>Cellular specificity</u>: reflect disease-related changes from keratinocytes and immune cells
- Functional role : directly regulate inflammation, angiogenesis, and immune responses
- Clinical significance : <u>Potential biomarkers for</u> <u>disease activity and treatment response</u>;
 promising therapeutic targets

Disease	Exo-miRNA	State in disease group/ specific cells	Origin of exosome	Target cell	Target gene	Significance	References
psoriasis	miR-381-3p	up	keratinocyte	CD4-positive T-cell	UBR5 and FOXO1	induce Th1 and Th17 polarization and promote psoriasis development	(17)
	246 miRNAs	up/down	plasma	-	-	provide abundant circulating exosomal miRNAs, target genes and signaling pathways for further research	(18)
	let-7b-5p and miR- 30e-5p	down	plasma	-	-	biomarkers for arthritis in psoriasis patients	(19)
	miR-151a-3p, miR- 199a-5p, miR-370- 3p, miR-589-5p, and miR-769-5p	ир	plasma	-	-	participate in the common pathogenesis of psoriasis vulgaris, psoriatic arthritis, rheumatoid arthritis and gouty arthritis	(20)
atopic dermatitis	miR-147	down	plasma	HaCaT cell	TLSP	exert protective effects by inhibiting TLSP expression	(21)
	25 miRNAs	up/down	plasma	-	-	biomarkers for psychological stress	(22)

Materials and methods

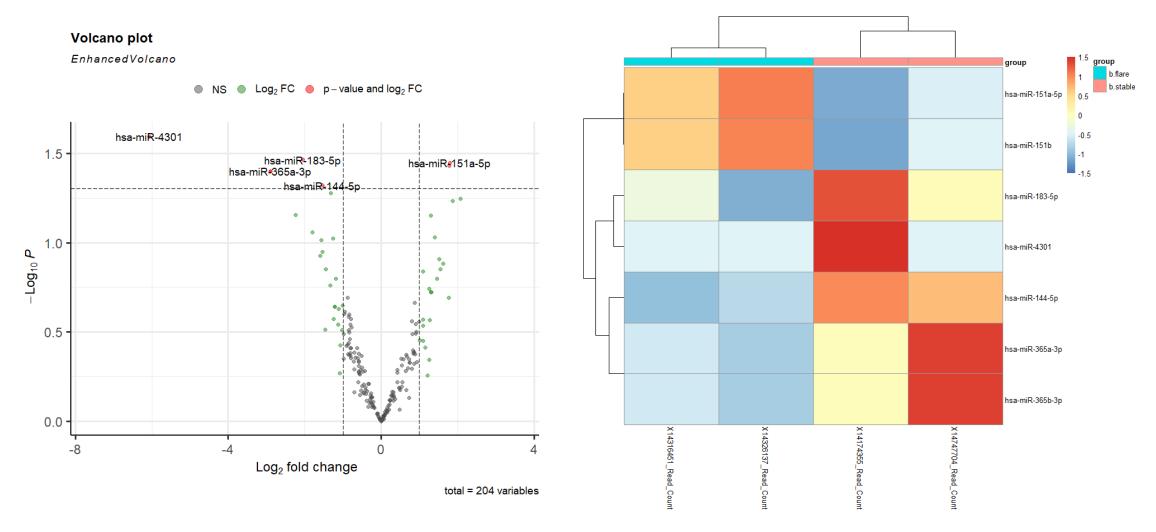
Purpose of the Study

- To investigate the differential expressions of exosomal miRNAs associated between durable responders and flareprone patients in severe AD receiving dupilumab during long-term follow-up
- To identify pathogenic mechanisms and prognostic biomarkers, including exosomal miRNA signatures, associated with treatment durability in dupilumab-treated AD patients (durable vs non-durable responders)

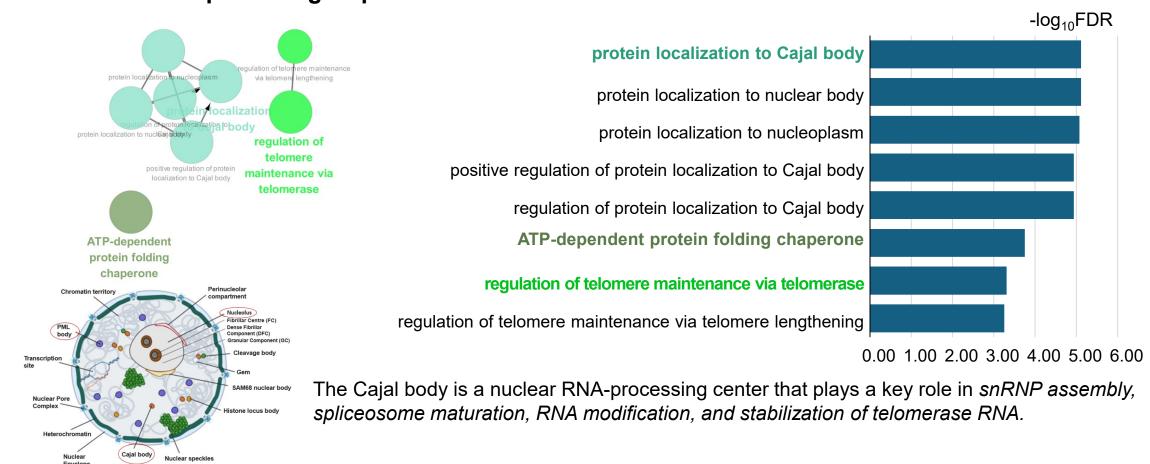
Patients information

- 6 adults with severe AD (baseline EASI ≥23)
- Serum-derived exosomes collected at baseline and at 12–18 months after dupilumab.
- Durable responders: EASI90 within 16 weeks, stable ≥1 year
- Non-durable responders: EASI75 before week 16, but ≥2 systemic flares within 1 year

Analysis

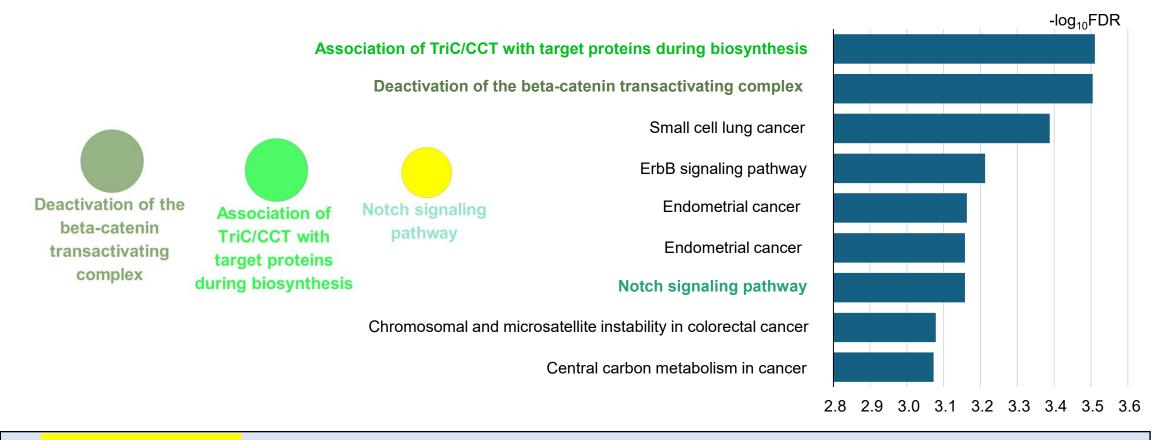

- Exosomal miRNA extraction → differential expression profiling
- 2 samples excluded due to quality issues

ID	State	Baseline/FU
14174355_Read	stable	Baseline
14747704_Read	stable	Baseline
14316451_Read	flare	Baseline
14326137_Read	flare	Baseline
14174355_After_Read	stable	FU
14477319_After_Read	stable	FU
14326137_After_Read	flare	FU
14729699_After_Read	flare	FU


Results

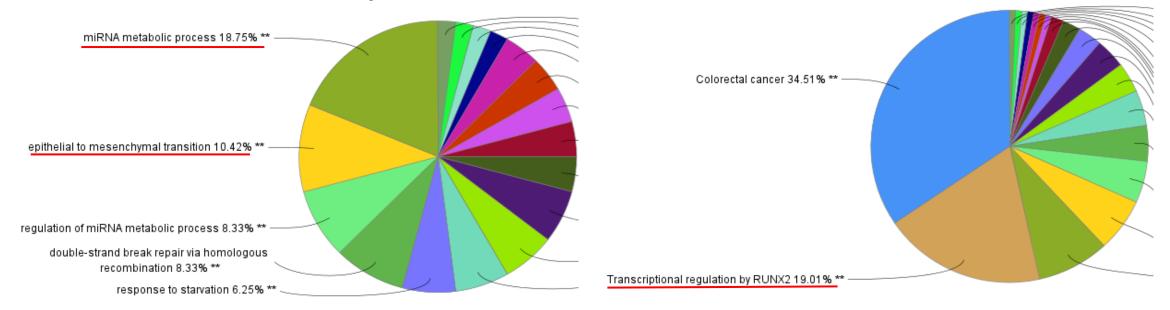
Non-durable responder vs Durable responder (Baseline)

- Volcano plot and heatmap of differentially expressed exosomal miRNAs at baseline
- The expression of miR-151a-5p and miR-151b were significantly higher in non-durable responders than in durable responders.



 Gene ontology (biological process) enriched by 57 genes targeted by upregulated two miRNAs in non-durable responders group

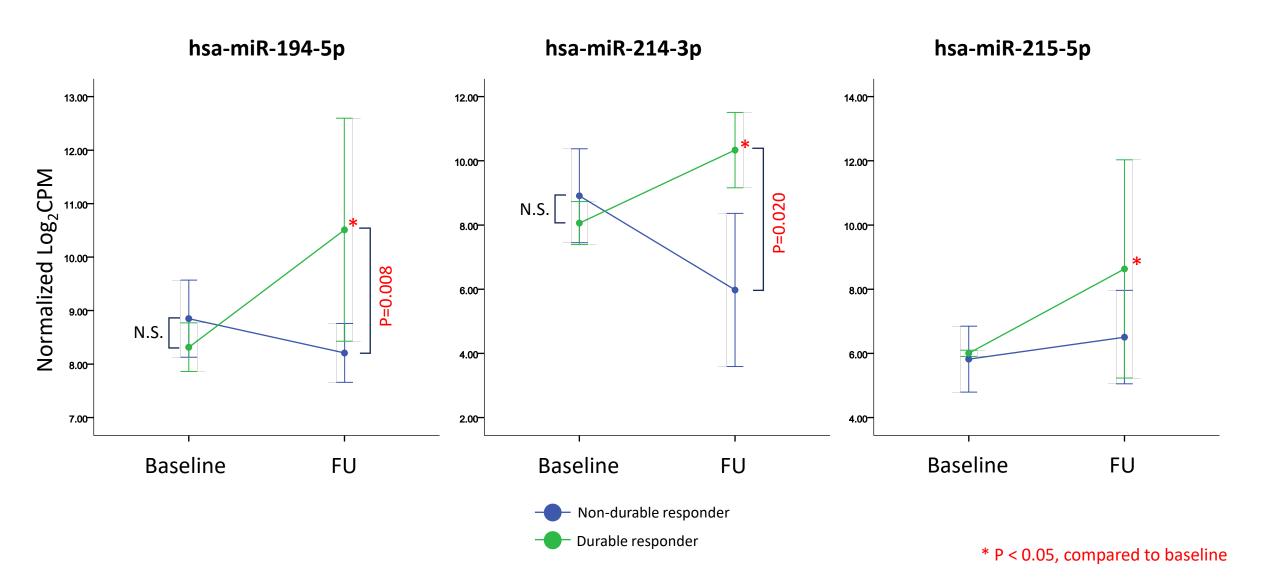
Upregulation of miRNAs targeting Cajal body, telomere maintenance, and ATP-dependent chaperones reflects a breakdown of nuclear protein quality control. This leads to protein misfolding, impaired RNA and chromatin organization, and premature cellular aging → chronic inflammation and recurrence


Pathways enriched by genes targeted by upregulated two miRNAs in non-durable responders group

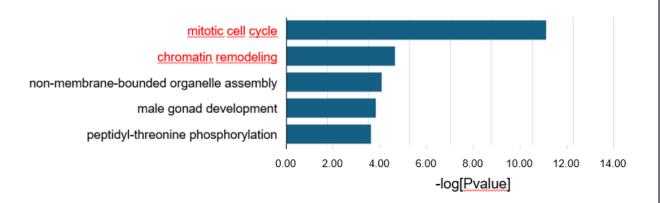
- ↓ *TriC/CCT complex*: **Protein/RNA homeostasis** and poor nuclear and protein quality control
- ↓ Notch signaling: impaired keratinocyte differentiation, epidermal barrier formation, and immune homeostasis, resulting in persistent Th2 inflammation.
- ↓ Deactivation of the β-catenin transactivating complex: enhanced β-catenin activity, leading to dysregulated keratinocyte proliferation and incomplete barrier remodeling in the flare group.

The expression levels of <u>miR-183-5p</u>, <u>miR4301</u>, <u>miR-1445p</u>, <u>miR365A3p</u>, <u>miR365b3p</u> were significantly lower in non-durable responders than in durable responders.

 Gene ontology (biological process) and pathway enriched by genes targeted by downregulated 5 miRNAs in non-durable responders



↑ Epithelial–mesenchymal transition (EMT):


- : Impaired keratinocyte differentiation compromises epidermal stratification and barrier stability

 chronic tissue remodeling
- ↑ Transcriptional regulation by RUNX2:
 - : aberrant keratinocyte differentiation and fibrosis-related transcription.
- ↑ mRNA metabolic process:
- : sustain cellular stress responses and prolong inflammatory signaling.

• miRNAs increased at follow-up in durable responder group compared to non-durable responder group

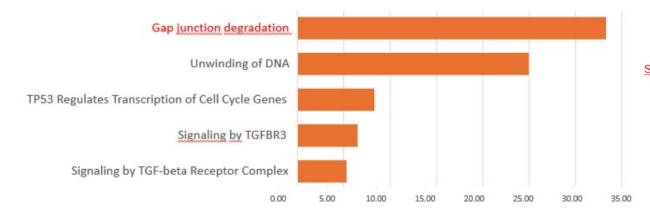
 Representative GO terms of each cluster of 272 target genes of 3 <u>upregulated miRNA</u> at follow-up in durable responder group compared to non-durable responder group

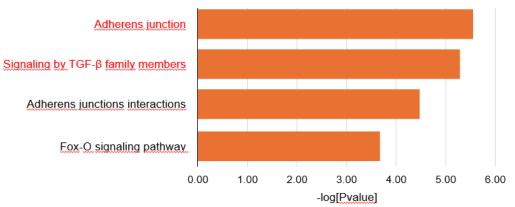
 Representative reactome pathway of each cluster of 146 target genes based on human protein atlas of 3 <u>upregulated miRNA</u> at follow-up in durable responder group compared to non-durable responder group

↓ Gap junction degradation

: stabilize cell–cell communication and epithelial integrity, maintaining coordinated tissue repair

↓ TP53 regulates transcription of cell cycle genes


: prevents excessive keratinocyte proliferation and supports post-inflammatory recovery and homeostasis.


↓ Signaling by TGFB3 / TGFB receptor complex

: Downregulation of fibrotic and EMT-related TGF- β signaling alleviates fibrotic remodeling

↓ Adherens junction

: barrier cohesion and mechanical resilience, counteracting chronic flare and epithelial detachment.

Conclusion

Non-durable Responders

- Decreased cellular stability and impaired adherens junction integrity
- Loss of nuclear protein quality control → protein misfolding and stress accumulation
- Suppression of Notch and TriC/CCT pathways → defective differentiation
- Persistent TGF-β and β-catenin activity → chronic remodeling and recurrent inflammation

Durable Responders

- Reinforced cell-cell adhesion (adherens/gap junctions)
- Suppression of fibrotic and proliferative signaling (TGF-β, TP53, EMT)
- Restoration of epithelial stability and resolution of inflammation
- Maintenance of immune-barrier homeostasis and long-term remission
- In durable responders, <u>preserved protein homeostasis</u> ensures <u>nuclear and epithelial stability</u>, whereas its disruption in non-durable responders leads to <u>protein misfolding</u>, <u>stress accumulation</u>, <u>and recurrent</u> <u>inflammation</u>
- Long-term AD control under dupilumab is associated with preserved <u>cellular protein homeostasis and</u>
 <u>epithelial junctional integrity</u> while non-durable response reflects <u>nuclear stress and defective tissue recovery</u>
 <u>mechanisms.</u>