Association of atopic dermatitis with thyroid diseases: a systematic review and meta-analysis

Ching-Chi Chi, 1,2 Yen-Ning Chen, 1 Tzu-Yu Wang, 3 and Cheng-Chen Tai4

¹Department of Dermatology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan

²School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan

³Dr Chun-Min Lin's Dermatology Clinic, New Taipei, Taiwan

⁴Department of Medical Education, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan

- Learning Objective: To understand the association of atopic dermatitis (AD) and thyroid diseases
- Takeaway Message: AD is associated with thyroid diseases, particularly in paediatric
 patients, warranting endocrinological consultation and early intervention to mitigate potential
 impacts on growth and cognitive development.
- Conflict of Interest: None.
- Contact: Prof Ching-Chi Chi (e-mail: chingchi@cgmh.org.tw)

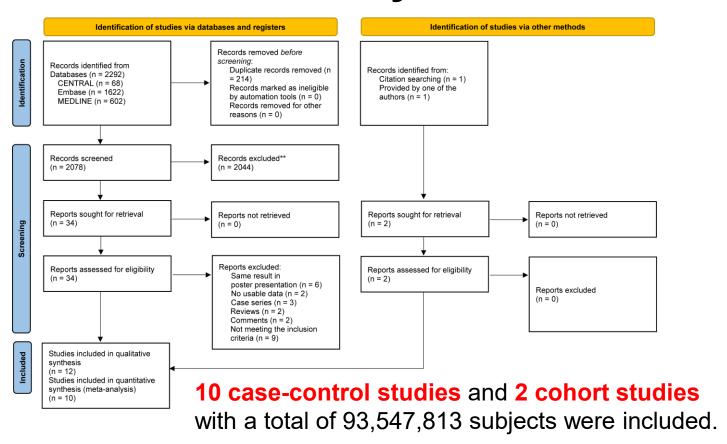
Immune dysregulation involved in AD

T helper (Th) 2 cells predominant

- Immunoglobulin (Ig) E production
- Associated atopic diseases: asthma, allergic rhinitis

Th1, Th17, Th22, regulatory T cells (Treg)

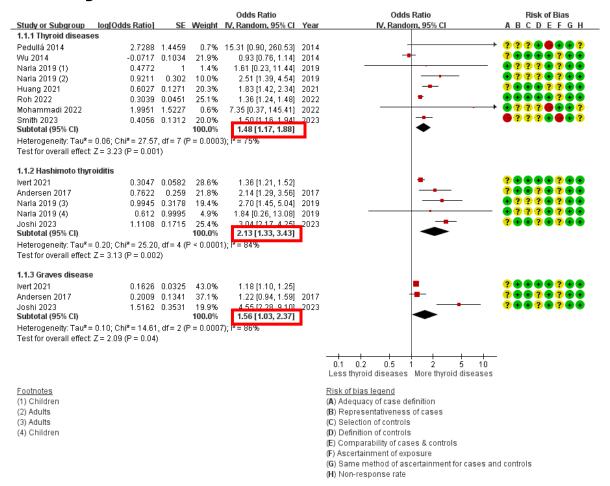
- Th1/17-mediated systemic autoimmune diseases:
 - Alopecia areata
 - Vitiligo
 - Inflammatory bowel diseases
 - Rheumatoid arthritis
 - Systemic lupus erythematosus

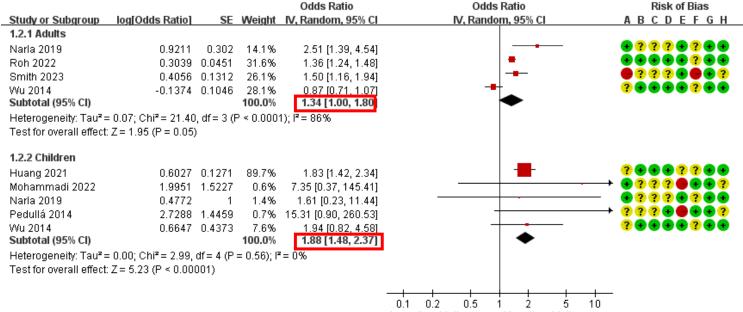

Thyroid diseases

- A range of chronic relapsing autoimmune disorders
- Hashimoto disease
 - 1st cause of hypothyroidism
 - Serum antibodies to thyroid peroxidase (TPO) and thyroglobulin (Tg) ↑
- Graves disease
 - 1st cause of hyperthyroidism
 - Serum autoantibodies to the thyrotropin receptor (TRAb)
- Clinical manifestations: palpitation, hand tremor,.....but lack specificity
- Diagnosis primarily depends on laboratory testing, imaging studies, cytology, and biopsy
- It is crucial to identify populations at high risk of developing thyroid diseases who may require heightened awareness for further diagnostic evaluation in case of suspicious symptoms

Methods

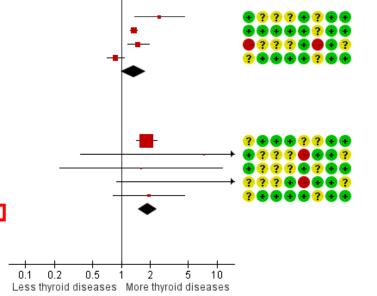
- Systematic review (SR) & meta-analysis (MA) of observational studies (case-control, cross-sectional, & cohort studies) on the association of AD with thyroid diseases.
- MOOSE reporting guideline was followed.
- Protocol registered with PROSPERO (CRD42024504157)
- We searched MEDLINE, Embase, and CENTRAL for relevant studies until 12th April, 2024.
- No restrictions on language, geographic regions, or publication status.
- References of eligible studies: manually scrutinized for additional studies (i.e., snowballing).
- Relevant published conference abstracts: tracked for subsequent full publications.
- Newcastle-Ottawa Scale was used for risk of bias assessment.
- We performed a random-effects model meta-analysis when there were ≥ three included studies providing usable data for one outcome.
- We also performed a subgroup analysis based on age, distinguishing between adult (≥ 18 years) and children (< 18 years) subgroups.


PRISMA study flowchart


Included studies: 10 case-control studies and 2 cohort studies with a total of 93,547,813 subjects

First author, year,	Study design	Case group	Control group	Risk (95% CI)	Risk (95% CI)	Risk (95% CI)
country				for thyroid diseases	for Hashimoto disease	for Graves disease
Andersen, 2017, Denmark	Case-control	8,112 AD patients aged ≥18	40,560 Age- and sex-matched	NA	OR: 2.14 (1.29–3.56)	OR: 1.22 (0.94–1.59)
		years	controls			
Huang, 2021, US	Case-control	86,969 AD patients aged <18 vears	116,564 Age- and sex-matched controls	OR: 1.83 (1.42-2.34)	NA	NA
Ivert, 2021, Sweden	Case-control	104,832 AD patients aged ≥15	1,022,435 Age- and sex-	NA	OR: 1.36 (1.21-1.52)	OR: 1.18 (1.10-1.25)
	Case-control	years	matched controls		Ort. 1.30 (1.21-1.32)	OR. 1.10 (1.10-1.23)
Joshi, 2023, US	Case-control	13,756 AD patients of all ages	55,024 Age-, race/	NA	OR: 3.04 (2.17-4.25)	OR: 4.55 (2.28-9.10)
			ethnicity-, and sex-matched controls		, ,	
Mohammadi, 2022, Iran	Case-control	62 AD patients aged <18 years	62 Controls	OR: 4.32 (2.15-10.81)	NA	NA
Narla, 2019, US	Case-control	9,290 AD patients aged ≥18	72,098,787 Controls	OR: 2.51 (1.39-4.54)	OR: 2.70 (1.45-5.04)	NA
		years				1
		10,196 AD patients aged <18 vears	14,934,882 Controls	OR: 1.61 (0.23-11.44)	OR: 1.84 (0.26-13.08)	NA
Pedullá, 2014, Italy	Case-control	147 AD patients aged <18 vears	70 Age-matched controls	OR: 15.31 (0.90-260.53)	NA	NA
Roh, 2022, US	Case-control	39,779 AD patients aged 18–64	353,743 Age- and sex-matched	OR: 1.36 (1.24-1.48)	NA	NA
	Case-control	vears	controls	OR. 1.30 (1.24-1.40)	INA	INA
Smith, 2023, US	Case-control	1,056 AD patients aged 20–59	9,004 Controls	OR: 1.50 (1.16-1.94)	NA	NA
		years				
Wu, 2014, Taiwan	Case-control	41,950 AD patients of all ages	167,800 Age- and sex-matched controls	OR: 0.93 (0.76-1.14)	NA	NA
de Lusignan, 2022, UK	Cohort	173,709 AD patients of all ages	694,836 Age-, sex-, and general practitioner practice-matched controls	NA	HR: 1.17 (1.09- 1.25)	HR: 1.03 (0.78- 1.36)
Krishna, 2019, UK	Cohort	1,393,570 patients of all ages	2,170,618 Age- and sex- matched controls	IRR: 1.13 (1.05–1.22)	NA	NA

AD & thyroid diseases: Case-control studies


Subgroup analysis by age

Test for subgroup differences: $Chi^2 = 3.02$, df = 1 (P = 0.08), $I^2 = 66.9\%$

Risk of bias legend

- (A) Adequacy of case definition
- (B) Representativeness of cases
- (C) Selection of controls
- (D) Definition of controls
- (E) Comparability of cases & controls
- (F) Ascertainment of exposure
- (G) Same method of ascertainment for cases and controls
- (H) Non-response rate

Potential mechanisms linking AD and thyroid diseases (1)

Shared immune dysfunction: T cells imbalance & IgE autoimmunity

- Acute AD: filaggrin↓ → damaged keratinocytes produce epidermal alarmins → activate Th2 + interleukin (IL)-4, IL-5, IL-13, IL-31 & chemokine ligand (CCL) 18↑; Th22 + of IL-22 and S100A proteins↑
- Chronic AD: Th2 & Th22 expression ↑ + Th1 & Th17 activation → Treg↓ by Th17
- Development of autoimmune thyroid diseases, including Hashimoto disease and Graves disease, also involves complex interactions of Th1, Th2, Th17, and Th22 cytokines.
- IgE autoimmunity:
 - Correlated with disease development & severity of both AD & thyroid diseases
 - Prevalence of thyroid autoimmunity: IgE-mediated > non-IgE-mediated AD children

Potential mechanisms linking AD and thyroid diseases (2)

Shared genetic susceptibility

- Genome-wide association studies: overlapped major susceptibility loci for AD and thyroid diseases
 - Chromosome 3q21: anti-TPO antibodies
 - Chromosome 1p22: defects in the beta subunit of thyroid stimulating hormone
 - Chromosome 19p13: Hashimoto disease
 - Chromosome 4q27: Graves disease
- **HLA-DRB1** variations in both AD and thyroid diseases
- Single nucleotide polymorphisms: Protein tyrosine phosphatase nonreceptor type 22, a regulator of T-cell & B-cell activity, linked to both AD and autoimmune thyroid diseases

Limitations

- No studies have investigated the association between varying severities of AD and thyroid diseases
- Most included studies originated from Western countries,
 with only two studies from Asia and none from Africa
- Most included studies were case-control design, with only two cohort studies meeting our inclusion criteria

Conclusions & take home message

- AD is associated with thyroid diseases, including Hashimoto and Graves diseases, particularly in paediatric patients.
- We should be aware and keep alert of this association.
- Early diagnosis and treatment of thyroid diseases in children and adolescents with AD may be important to prevent lifelong disabilities in growth and cognitive development.